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Abstract. We study numerically the optical transmission of one-dimensional binary quasiperiodic
dielectric multilayers, which are arranged in Fibonacci sequences along two opposite directions
and possess a mirror symmetry. We find that the transmission coefficient is unity for all sequences
studied at the central wavelengthλ = λ0, whereλ0 = 4nA (B)dA (B), with nA (B) anddA (B) being
the index of refraction and thickness of two kinds of layer, respectively. As the number of layers in
the sequence increases, more and more perfect transmission peaks appear. We observe a scaling of
the transmission spectra with increasing sequence length. These phenomena will find applications
in fabrication of multiwavelength narrow-band optical filters.

1. Introduction

The study of electron localization in random systems has been an active field of research. From
scaling theory [1,2], it is known that all of the states are localized in one- and two-dimensional
systems. However, the experimental observation of this phenomenon has been hampered by
some possible interactions (electron–electron and electron–phonon) in real materials. It was
later realized that the localization can be expected for any wave phenomenon, such as optical
waves [3]. Since then, there has been increasing interest in studies of the localization of
electromagnetic waves in photonic band-gap (PBG) materials [4–8]. This interest is partly
due to the fact that the experimental study of the localization of light waves in an optical
medium can be carried out at room temperature instead of the very low temperatures required
in the study of electron localization. Besides, because of the nonexistence of the electron–
electron and electron–phonon interactions in the optical case, the study of electromagnetic
waves provides a possibility of testing for Anderson localization. Furthermore, the unusual
property of the control of the propagation of light in PBG has potential applications in many
optical devices [7–9].

In the past few years, the studies of PBG have been extended to photonic quasiperiodic
structures [10–16]. As is well known, the electronic and phonon spectra of the one-dimen-
sional Fibonacci chain or Fibonacci multilayer are described by a Cantor set with zero Lebesgue
measure [17,18]. For exhibiting the physical effects of quasiperiodic order, Kohmotoet al [10]
proposed the photonic Fibonacci lattice and predicted that the transmission spectrum would
have a multifractal structure. Recently, the experimental realization of optical Fibonacci
dielectric multilayers has been reported [12–14]. The scaling of the transmission coefficient
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with increasing Fibonacci sequence length has been experimentally observed [12,13]. These
experimental results are in good agreement with theory [10].

On the other hand, Dunlapet al [19] pointed out that, in a one-dimensional random-dimer
model (RDM), a small proportion of extended states can be found. The basic reason for the
appearance of extended states in this system has been traced to the existence of symmetric
internal structure [20]. Xiong [21] studied the transmission of electrons through a random
array of a number of identical multibarriers and found that there exist electrons with special
energies which are completely unscattered. Along these lines, it may be a valid question to
ask how the symmetric internal structure in quasiperiodic optical multilayers influences the
transmission property.

This paper is organized as follows. In section 2, we present the model and the methods that
we are concerned with. In section 3, we study numerically the optical transmission properties.
Finally, we give a brief summary and discussion in section 4.

2. Models and formalism

Let us consider a multilayer in which two types of layer A and B are arranged in a binary
Fibonacci sequence. Then, we have a simple binary symmetric Fibonacci sequence (SFS)
which is constructed asSj = {Gj, Fj }, whereFj andGj are Fibonacci sequences, which
obey the recursion relationsFj = {Fj−2, Fj−1} andGj = {Gj−1,Gj−2}, for j > 1, with
F0 = G0 = {B} andF1 = G1 = {A}. As an example, the fifth sequence ofSj is

S5 = {ABAABABAABABAABA } (1)

where the ratio of the numbers of the two incommensurate intervals A and B is equal to the
golden meanτ = (√5 + 1)/2.

As can be seen from expression (1), the sequence possesses symmetric internal structure.
For the study of the transmission coefficient, we use the formalism presented in reference [10].
Each layer is characterized by its index of refractionnA (B) and its thicknessdA (B). Let matrices
TAB andTBA represent the light propagation across interfaces A← B and B← A. For the
case of a normally incident light wave, the matrices are given by

TAB = T −1
BA =

[
1 0
0 nB/nA

]
. (2)

The propagation within one layer can be described by

TA = TB =
[

cosδ − sinδ
sinδ cosδ

]
(3)

where the phaseδ is given byδ = 2πnAdA/λ = 2πnBdB/λ (λ is the wavelength of the mono-
chromatic electromagnetic wave). Here, we suppose that the index of refraction is wavelength
independent and the thicknesses of the optical layers are chosen to givenAdA = nBdB.
Therefore, equation (3) is valid only under this condition.

In the following, we will study the optical transmission properties ofSj . For a finite
multilayerSj , which is sandwiched by two media of type A, the corresponding propagation
matrixMj is obtained:

Mj = Xj−1Xj−2Zj−2Zj−1 (4)

whereXj andZj are the propagation matrices ofGj andFj , respectively. The initial conditions
are:X0 = Z0 = TABTBTBA, X1 = Z1 = TA. SinceMj is a unimodular transfer matrix, the
transmission coefficientTj can be immediately written down:

Tj = 4

m2
11 +m2

12 +m2
21 +m2

22 + 2
(5)
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wherem11,m12,m21,m22 are the elements ofMj .
For the case of the ideal Fibonacci sequence (IFS), Kohmotoet al [10] predicted the

transmission coefficient to exhibit a self-similar behaviour aboutδ = (m + 1/2)π , with
Tj+3 = Tj , wherem is an integer. The scaling behaviour of the transmission coefficient
is characterized by the scale factor

f = [1 + 4(1 +J )2]1/2 + 2(1 +J ) whereJ = sin4 δ[nA/nB − nB/nA]2/4.

For the SFS (1) studied here, we find that theδ = π/2 (λ = λ0) case also has the very special
feature that the matricesMj satisfy

M3k = M3k+1 = −M3k+2 = −I k = 0, 1, 2, . . . (6)

whereI is the unit matrix. From equation (6), we can see that the matrices have a period
of three which differs from the period six of the IFS [10]. This implies that similar scaling
behaviour [10] of the transmission coefficient can be observed within a small region around
δ = (m+1/2)π . Moreover, for anyk, the matrix is the identity or the negative identity matrix,
which means that perfect transmission can be expected whenλ = λ0.

3. Numerical results

3.1. Properties of optical transmission spectra

In the following numerical investigation, we chose SiO2 (A) and TiO2 (B) as two elementary
layers, with indices of refractionnA = 1.45 andnB = 2.3, respectively. The optical thickness
of each layer is a quarter wavelength (λ0/4), whereλ0 is the central wavelength. These
conditions imply the phaseδ = πλ0/2λ. For comparison, the transmittances versusλ0/λ for
both IFS and SFS are plotted in figure 1. For the IFS, figures 1(a)–1(c) show the numerical
results forF5 (8 layers),F6 (13 layers) andF10 (89 layers), respectively. In these figures,
only one perfect transmission is found aroundλ = λ0 (see figure 1(c)); this result can be well
explained by the corresponding transfer matrix [18]MF

10 = I . However, as predicted above,
we have unity transmission for any given SFS whenλ = λ0 (refer to figures 1(d)–1(f )). In
these three figures, it can also be seen that there are some narrow perfect transmission peaks
which are separated by the photonic gaps. Furthermore, on increasing the number of layers in
the sequences (16→ 26→ 178), more and more transmission peaks with unit transmission
coefficient appear. Comparing figure 1(c) with figure 1(f ) we can see that for IFS−→ SFS,
although the positions of the transmission peaks are different, the position and the width of the
main photonic band gaps remain unchanged. These phenomena in the transmission spectra of
the SFS may be useful in the design of optical devices.

To illustrate the scaling property of the transmission spectra of the SFS, we study the
transmission coefficients forS7 (42 layers),S10 (178 layers),S13 (754 layers) andS16 (3194
layers). We enlarge the figures aroundλ = λ0 and obtain the four similar pictures shown
in figure 2(a) forS7, figure 2(b) forS10, figure 2(c) forS13 and figure 2(d) forS16. The
three-cycle feature is well confirmed by these numerical calculations. And the scale factor
f ≈ 5.11, which is the same as that obtained in reference [10]. Note that some resonant peaks
of figure 2(a) are much further away from the central position (λ = λ0) than those of the other
three figures. This phenomenon confirms well the theoretical prediction that the three-cycle
property of the transmission spectra ofSj can be expected within a narrow region around
λ/λ0 = 1.0. For the given parametersnA = 1.45, nB = 2.3 of the SFS, the corresponding
region is [0.95, 1.05].

To show the self-similarity of the transmission spectra about the central wavelengthλ = λ0

(corresponding to the phaseδ = π/2). We calculate the transmission spectra forS17 (5168
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Figure 1. The transmittance versus
λ0/λ for (a) F5 (8 layers), (b)F6 (13
layers), (c)F10 (89 layers), (d)S5 (16
layers), (e)S6 (26 layers), (f )S10 (178
layers). The indices of refraction are
chosen asnA = 1.45 andnB = 2.3.
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Figure 2. The enlarged figures for (a)S7
(42 layers), (b)S10 (178 layers), (c)S13
(754 layers) and (d)S16 (3194 layers).
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layers). We apply the scale factorf = 5.11 to the centre of the optical band repeatedly. And
the corresponding enlarged figures are showed in figures 3(a)–3(c). The self-similarity feature
is explicitly presented in these figures. Because of the symmetry of the transmission spectra,
only half of the numerical results are plotted in these figures. We have employed multifractal
analysis (f (α) ∼ α) [22] and demonstrated that figures 3 do indeed possess multifractal
properties.
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Figure 3. The self-similarity of the transmission spectra around the central wavelengthλ = λ0 for
S17 is shown. The scaling factorf is equal to 5.11.

3.2. The influence of the randomness

In order to model the optical multilayers more realistically, it is essential to investigate the
transmission property of the SFS when the randomness of the film thickness or a systematic
error is considered in the system. To explore this aspect of the problem, we suppose that the
random thicknesses of the optical layers A(B) are given by

dRA (B)(i) = dA (B)(1 +pξi) (7)

wheredA (B) is the original thickness of the optical layer,ξi is a random number which falls
in the range [−0.5, 0.5] andp = [dRA (B)(i)max− dRA (B)(i)min]/dA (B), which can be used as an
indicator representing the randomness of the film thickness.

Figure 4 shows the results of numerical calculations for several situations. Figures 4(a)
and 4(b) are obtained forS6 (26 layers) andS10 (178 layers) with 20% randomness (p = 0.2).
Comparing these two figures with figures 1(e) and 1(f ), it is evident that in the case of a very
small number of layers (S6), only a little change in the intensity of the transmission peaks can be
observed between figures 1(e) and 4(a). When the number of layers becomes large (S10), great
change in the intensity of the transmission peaks can be observed between figures 1(f ) and
4(b). Generally speaking, as the number of layers increases, the influence of the randomness
will be magnified and all the resonant peaks will eventually disappear. We have studied a
series of the transmission spectra of the SFS by increasing the number of layers and by varying
the randomness, and found that when the number of layers is less than 110 (S9) and the
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Figure 4. The transmittance forS6 andS10 versusλ0/λ for several cases. (a) The thickness of the
sample is prepared with 20% randomness forS6. (b) The thickness of the sample is prepared with
20% randomness forS10. (c) The sample is prepared by one misplacement of two neighbouring
layers ofS6. (d) The sample is prepared by one misplacement of two neighbouring layers ofS10.

randomness is controlled within 5%, the resonant peaks are almost unchanged. Furthermore,
one may also find from these figures that although there are substantial changes in the peaks
of the transmittances, the photonic gaps are essentially unaffected by the randomness.

In figures 4(c) and 4(d), we show the results for systems with systematic errors (the
misplacement of two neighbouring materials), with (c) one misplacement ofS6 and (d) one
misplacement ofS10. Comparing figures 4(c) and 4(d) with figures 1(e) and 1(f ), respectively,
we can see that the position and the intensity of the transmission peaks have been changed
greatly and the two biggest gaps have been narrowed. Moreover, when the number of
misplacements is larger than three, the two biggest gaps of figures 1(e) and 1(f ) will disappear
and all the quasiperiodic features will be destroyed. Also, from these two figures, we note that
the misplacement of neighbouring layers does not change the mirror symmetry of the spectra.
This feature can be explained by using equations (2), (3) and (5). Assuming that the two
optical phases areδ± = π/2±1δ, respectively, one can easily show that the corresponding
transmission coefficientsTj (δ+) andTj (δ−) are the same.

4. Summary and discussion

We have studied the light-wave propagation in optical Fibonacci superlattices with symmetric
internal structure. We have shown that the combination of aperiodic long-range order and
mirror symmetry can greatly enhance the transmission intensity. In particular, for any
given index of refractionnA (B), we have obtained a perfect transmission coefficient for the
sequences studied at the central wavelength. Around the central wavelength, many sharp
perfect transmission peaks have been obtained numerically. And the self-similarity structure
of transmission spectra is definitely found. These interesting properties make the SFS a possible
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candidate design material for multilayered optical filters. And similar results can be expected
for other one-dimensional quasiperiodic systems.

It must be noted that, except for the special case ofλ = λ0, we have not provided a
satisfactory explanation of the physical nature of the results obtained. In our opinion, to achieve
a more comprehensive understanding of these properties, it is important to pay attention to the
properties of the transfer matrix. Besides, to pursue experimental evidence of these peculiar
transmission properties, further theoretical work is needed.
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